

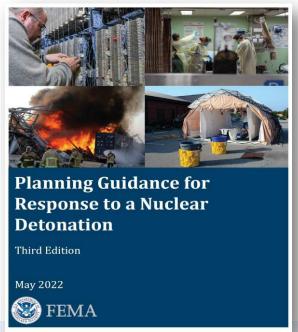
Nuclear Detonation Response Training

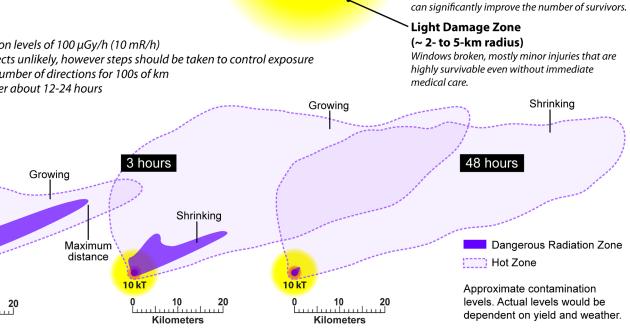
Module 3: Response Guidance

July 2025

Brooke Buddemeier, Certified Health Physicist

Global Security

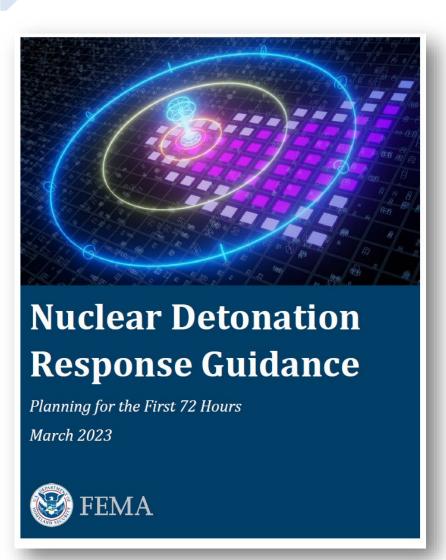



Chapter 2: A Zoned Approach

1-3 hours

Chapter 2 provides an overview of the Response Zones and Emergency Worker Safety Considerations

Severe Damage Zone (~ 1-km radius) **Fallout Zones Blast Zones** Most buildings destroyed, hazards and radiation (Approximate for a 10kT) (Approximate for a 10kT) initially prevents entry into the area; low survival likelihood. **Dangerous Radiation Zone (DRZ) Moderate Damage Zone** - Bounded by radiation levels of 100 mGy/h (10 R/h) (~ 1- to 2-km radius) - Acute Radiation Injury possible within the DFZ Significant building damage and rubble, downed - Could reach 15-30 km (10-20 miles) downwind utility poles, overturned automobiles, fires, and - Begins to shrink after about 1-2 hours many serious injuries. Early medical assistance **Hot Zone** - Bounded by radiation levels of 100 μGy/h (10 mR/h) - Acute radiation effects unlikely, however steps should be taken to control exposure - Could extend in a number of directions for 100s of km medical care. - Begins to shrink after about 12-24 hours


3

Companion <u>Nuclear Detonation Response Guidance:</u> Planning for the First 72 Hours

Provides local agencies prioritized, operational guidance on how to initially respond to a nuclear detonation in or near their jurisdiction

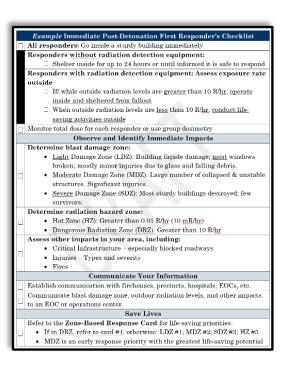


Figure 1 First Responder's Checklist

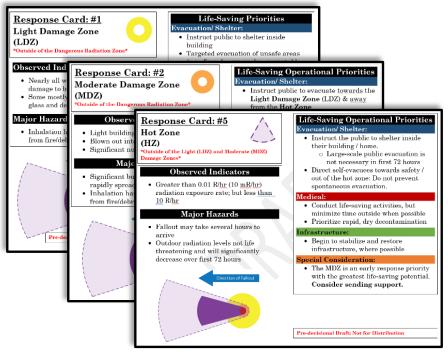


Figure 2 Zone-Based Response Cards

LLNL-PRES-2008162-DRAFT 5

Structure: Missions and Tactics

- A framework for how jurisdictions, states, and regions build a coordinated, single response out of disassociated initial actions
- Will need to be executed simultaneously

Organize the Response

- Tactic 4: Initiate a Zone-Based Response
- Tactic 5: Establish Area Command
- Tactic 6: Sustain Critical Infrastructure

Protect Responders and the Public

 Tactic 1: Immediately Issue Alert to Get Inside

Provide Care to Survivors

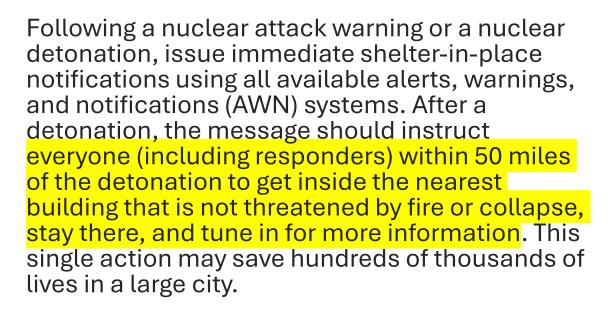
- Tactic 7: Evacuate
- Tactic 8: Triage, Stabilize, and Transport
- Tactic 9: Decontaminate

Gather Information

- Tactic 2: Characterize the Impacts
- Tactic 3: Develop a Common Operating Picture

Prepare for Intermediate Phase

 Tactic 10: Transition to a Prolonged Response



Mission #1: Protect Responders and the Public

Protect Responders and the Public

 Tactic 1: Immediately Issue Alert to Get Inside

www.cdc.gov/nceh/radiation/emergencies/

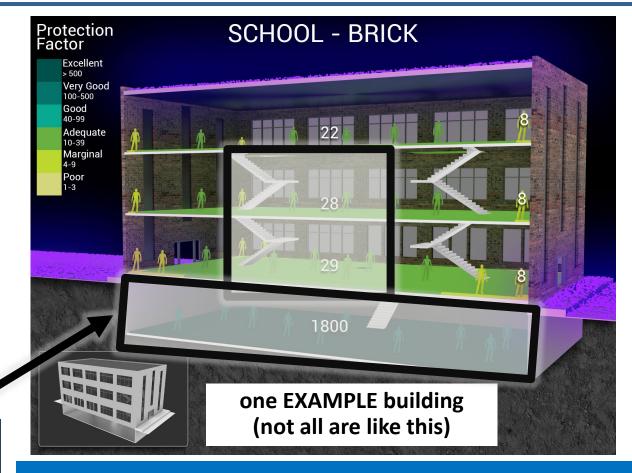
Image credit: CDC.

7

This work was conducted under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under DE-AC52-07NA27344 and in partnership with the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T) under Contract 70RSAT21KPM000036.

LLNL-VIDEO-855296

Building Protection Varies Widely


Fallout building protection depends on

- How the building is built (construction details)
- How the building is used (building contents)
- Where people are located in the building

Protection factors can, but not always, vary widely (1 to 1,000+)

- Within a single building
- Among different buildings of same type, such as offices or apartments
- Between different countries

Best protection is in the building center or below ground

For more information:

https://doi.org/10.2172/1358310

https://figshare.com/articles/preprint/US_Fallout_Shelter/20444598

Which US Buildings Have Adequate Protection?

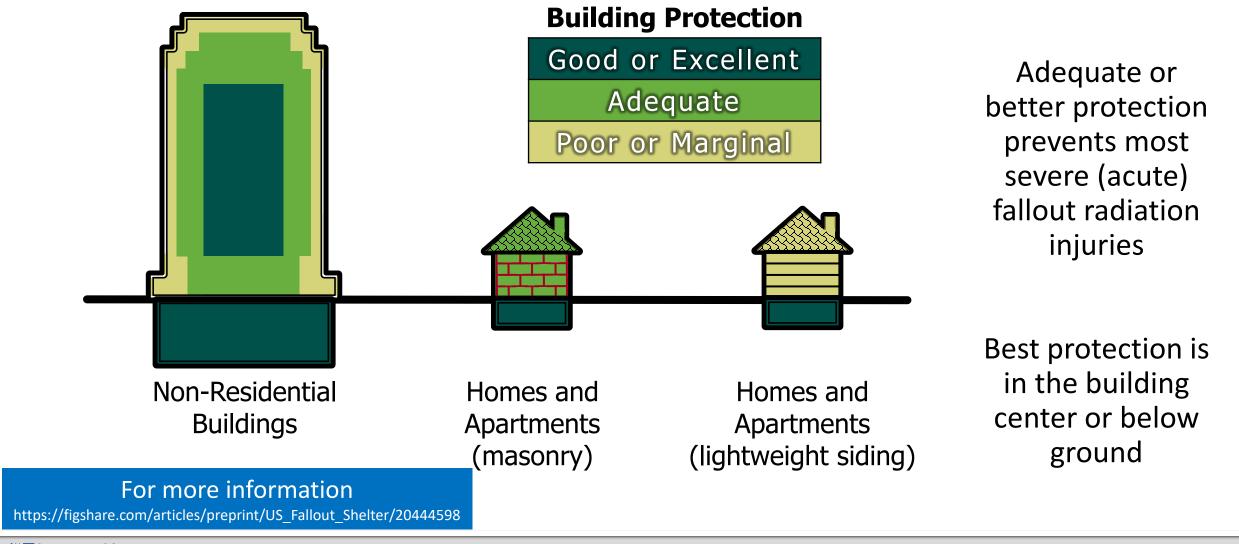
We calculated detailed building protection estimates for >100,000 cases

Basements provide adequate protection

Above ground US residential building protection is sensitive to the exterior wall

- Lightweight exterior (wood or vinyl siding) buildings lack adequate protection
- Masonry exterior (brick or concrete) buildings provide adequate protection

Most (> 90%) people in non-residential buildings have adequate protection if they go to the building center or below ground

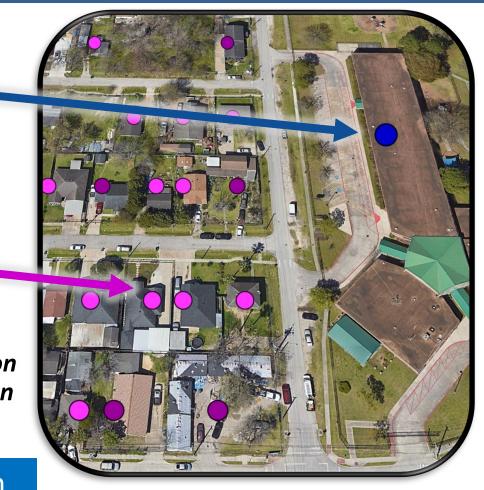


For more information:

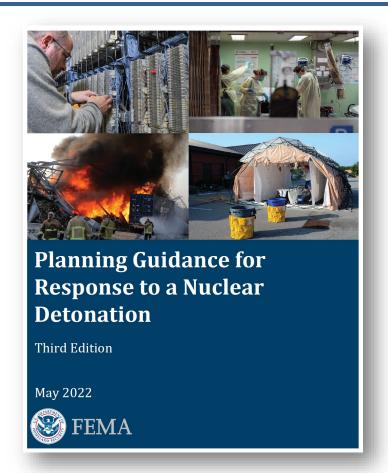
https://figshare.com/articles/preprint/US_Fallout_Shelter/20444598

Illustration of US Building Fallout Protection

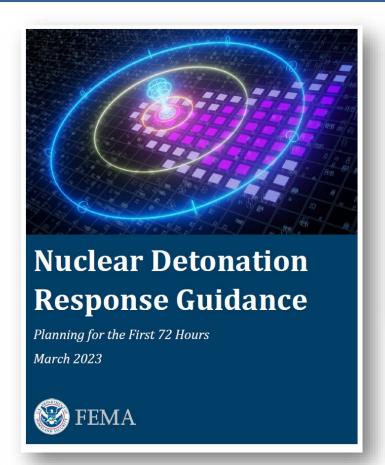
Seek Adequate, Nearby Shelter

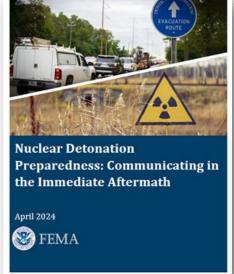

There may be buildings with adequate protection nearby

Many US homes lack adequate protection (people are at risk in the Dangerous Radiation Zone)


People should travel to nearby, adequate shelter (within 15 min travel) population protection better

For more information


https://doi.org/10.1098/rspa.2013.0693


Recent Developments in Response Planning

3rd Edition of **Planning** Guidance published May 2022

<u>New!</u> Companion Response Guidance published March 2023

Pre-scripted emergency message guides, translated into 29 languages (including Korean)

FEMA's **2024** Messaging Guidance and example messages

GET INSIDE. STAY INSIDE. STAY TUNED

Go to the basement or the middle of a building.

Plan on 12 – 24 hours unless provided updated guidance.

AM/FM Radio is best, Cellular and Internet if available.

Public Information is Available Online

What are the main dangers of an Improvised Nuclear Device?

An IND would cause great destruction, death, and injury and have a wide area of impact. People close to the blast site could experience:

- · Injury or death (from the blast wave)
- · Moderate to severe burns (from heat and fires)
- · Blindness (from the intense light)
- · Radiation sickness, also known as acute radiation syndrome or ARS (caused by the radiation released)

People farther away from the blast, but in the path of fallout, could experience health effects from:

- · Fallout on the outside of the body or clothes (external contamination) or on the inside of the body (internal contamination)
- · Radiation sickness
- · Contaminated food and water sources

What should I do to protect myself?



Informational Champaigns Lessons Learned (NYC, 2022)

WHERE TO GO IN A RADIATION EMERGENCY

If a radiation emergency happens in your area, you should get inside immediately.

No matter where you are, the safest action to take is to: GET INSIDE. STAY INSIDE. STAY TUNED.

- · Close and lock all windows and doors.
- Go to the basement or the middle of the building. Radioactive material settles on the outside of buildings; so the best thing to do is stay as far away from the walls and roof of the building as you can.
- If possible, turn off fans, air conditioners, and forced-air heating units that bring air in from the outside. Close fireplace dampers.
- · Bring pets inside.
- · Stay tuned for updated instructions from emergency response officials.

First Shelter (Seek Adequate, Nearby Shelter)

→ Å [] GET INSIDE	STAY INSIDE	STAY TUNED
Get inside a safe building or underground quickly	Plan to stay inside for 12 to 24 hours	Listen to radio, television, Internet, smartphones, etc.
The safest buildings have thick brick or concrete walls	Dangerous radiation levels decrease with time	Information and instructions will be updated
Cars will not protect you. Get indoors immediately!	Don't leave to get children. Everyone is safer staying inside	Follow instructions of emergency responders

Sheltering is the best default action to take immediately before or following a nuclear explosion

This is Where Emergency Managers Need to be Prepared...

Stay Tuned for Instructions from Emergency Officials

Local emergency officials will provide instructions on what you should do in your area.

Stay tuned to find out what further actions local officials recommend to keep you and your family safe. Emergency officials will provide information on the following:

- Where to Get Screened for Radioactive Contamination
- Mental Health
- Evacuation
- Evacuation with Pets
- Shelters
- Helping Others

SEARCH

CDC A-Z INDEX >

Emergency Preparedness and Response

Radiation Emergencies What Should I Do? Get Inside Stay Inside

Ways to Stay Tuned

Stay Tuned

Screening Mental Health

Evacuation

Helping Others

Questions About Radiation (FAQ)

Radiation Dictionary Radiat on Emergencies &

Your Health

Isotopes

Types of Radiation Emerg ncies

Information for Professionals

Radiation Emergency Training, Education, and Tools Information on Specific Types of Emergencies > Radiation Emergencies > What Should I Do? > Stay Tuned

What to Do During a Radiation Emergency: Stay Tuned

Get Inside

Language: English (US)

A nuclear power plant accident, a nuclear explosion or a dirty bomb are examples of radiation emergencies. If something like this happens, you may be asked to get inside a building and stay inside for a period of time instead of leaving.

It will be important to stay tuned once you get inside for updated instructions from emergency response officials. As officials learn more about the emergency, they will be communicating the latest information to the public. Television, radio, and social media are some examples of ways that you may receive information.

Learn more >>

Ways to Stay Tuned

- A battery-powered or hand crank emergency radio, preferably a National Oceanic and Atmospheric Administration (NOAA) weather radio is one of the best ways to stay tuned.
- Try to use text messages (SMS). Making phone calls could be hard.
- If you have a computer, or web-enabled device that works, use email and social media websites (like CDC Emergency on Facebook and Twitter).
- Make sure your electronic devices are working. If your electronic devices with batteries are not working, you can try taking the batteries out of the device, putting them back in, and restarting the device as normal.
- · For more information on emergency preparedness kits, go to http://emergency.cdc.gov/preparedness/kit/disasters

Learn more >>

Prepare Your Health

Coping with a Disaster or

Traumatic Event

Information on Specific Types of Emergencies

Information for Specific Groups

Resources for Emergency Health

Professionals

Training & Education

Stay Tuned for Instructions from Emergency Officials

Local emergency officials will provide instructions on what you should do in your area. Stay tuned to find out what further actions local officials recommend to keep you and your family safe. Emergency officials will provide information on the following:

- Where to Get Screened for Radioactive Contamination
- Mental Health
- Evacuation
- Evacuation with Pets
- Shelters
- Helping Others

More Information

Resources for Professionals

Additional Resources

Nuclear Detonation
Preparedness: Communicating in
the Immediate Aftermath

April 2024

https://www.fema.gov/sites/default/file s/documents/fema_nuclear-detonationpreparedness_communicating-in-theimmediate-aftermath_v3_2024.pdf

CDC Radiation Risk Communication for Public Health

https://www.cdc.gov/nceh/radiation/emergencies/cerc.htm

Health & Human Services https://www.remm.nlm.gov/nuclearexplosion.htm

Public Information Officers: Information for Radiation Emergencies

https://remm.hhs.gov/remm_pio.htm

Quick Thoughts on Messaging and Communicating for Health Physicists

https://summitet.com/2021/04/15/comms-health-physics/

CBRN Responder Public Information Resources

https://www.cbrnresponder.net/app/index#resources/documents/index?rltf= 104

Ready.gov - Nuclear Explosion:

https://www.ready.gov/nuclear-explosion

Hawaii's Nuclear Attack Alert

In watching interviews with people in Hawaii after the false alert, it was clear that what generated a significant amount of anxiety was not knowing what to do...

Courtesy of Honolulu Civil Beat. January 13, 2018 Article by Anthony Quintano

Nuclear Emergencies in the Age of Google...

"We were afraid to follow all of the hotel employees calmly telling us to go into a ball room. Then I googled "safety nuclear bomb how shelter" and an article by you was the first thing that popped up. In seconds I read that we should be inside and we quickly followed that advice."

"Did you ever think your article would be used in that way? If the alarm had been real, your article and the work of those researchers might very well have saved lives. I'm curious how many others followed that link today."

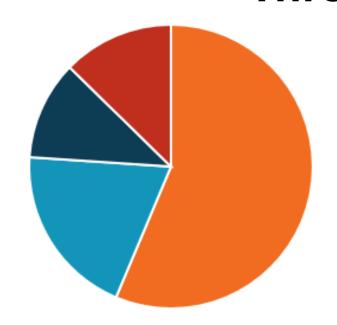
~ E-mail to Dave Mosher at Business Insider

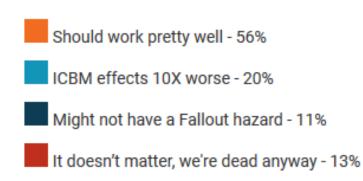
An illustration of a nuclear bomb exploding in a city. Shutterstock

- A small nuclear bomb set off by a terrorist is one of 15 disaster scenarios the US government plans for.
- Such a blast would create radioactive fallout, which could kill or hurt people many miles away.
- If you were to survive a nuclear attack, you should take shelter indoors, stay put, and listen to a radio for instructions.
- Sheltering from fallout could save hundreds of thousands of lives in a city.

Pop Quiz

So how much of nuclear terrorism guidance applies to the Nation-State Intercontinental Ballistic Missile Threat?


- 1. Should work pretty well
- 2. Inadequate for the ICBM Threat
- 3. Might not have a Fallout hazard
- Doesn't matter, we're all dead anyway



Audience participation from Riverside Preparedness

How much of this applies to a Nation-State Inter-Continental Ballistic Missile Threat?

Immediate Response: "Duck and Cover"

A Bright Flash of Light could indicate a nearby Nuclear Detonation.

- For a large yields (> 10 kt), the thermal pulse can cause skin burns several kilometers away.
 - The pulse is intense, but short (a few seconds) so even covering with cloth or paper can protect you
- The shock wave can cause injury but may take several seconds to reach your location. You can be injured by:
 - Being knocked over and/or blown into structures
 - Flying and falling debris
 - Ear and lung injury if with kilometer
- Immediately ducking down and covering up can help protect you for these effects. This is the basis of the "Duck and Cover" program

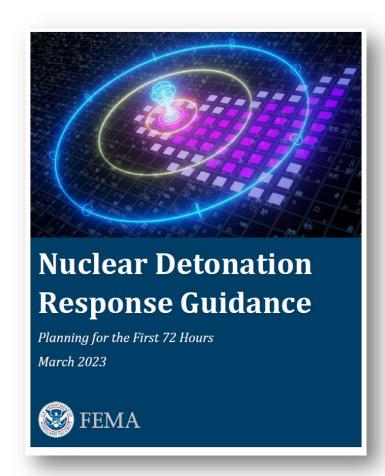
Duck and Cover 2.0: Addressing our Expanded Threat Base

Imminent Nuclear Threat

- Protective Actions for Prompt Effects
- 10 − 20 minutes to get into a good shelter
- Get inside a basement or central room away from windows and doors, stay inside, stay tuned for more information

No Notice Detonation

- "Duck and cover" for prompt effects protection
- Prompt effect protection difficult without "hyper vigilance"


Nuclear Fallout

- 15 minutes or more to take action after detonation
- Get inside a basement or central room, stay inside for 12-24 hours, stay tuned for more information

Get Inside, Stay Inside, Stay Tuned still works, but the details may change.

Mission 2: Gather Information

Gather Information

- Tactic 2: Characterize the Impacts
- Tactic 3: Develop a Common Operating Picture

Responder Checklist: Safety

Immediate Post-Detonation First Responder's Checklist **All responders:** Go inside a thick-walled building/underground basement immediately Responders without radiation detection equipment: Shelter inside for up to 24 hours or until informed it is safe to respond Responders with radiation detection equipment: Assess exposure rate outside If outside radiation levels are greater than 100 mGy/h (10 R/h), stay inside and sheltered from fallout When outside radiation levels are less than 100 mGy/h (10 R/h), conduct lifesaving activities outside **Monitor total dose** for each responder or use group dosimetry

Observe and Identify Immediate Impacts

Determine blast damage zone:

- Light Damage Zone (LDZ): Mostly building facade damage, nearly all windows broken,
- Moderate Damage Zone (MDZ): Large number of collapsed and unstable structures, significant injuries
- <u>Severe Damage Zone (SDZ)</u>: Even sturdy buildings destroyed, few survivors

Determine radiation hazard zone:

- Hot Zone (HZ): Greater than 0.1 mGy/h (same as 100 uGy/h)
- <u>Dangerous Radiation Zone (DRZ)</u>: Greater than 100 mGy/h

Assess other impacts in your area, including:

- Critical infrastructure, especially blocked roadways
- Injuries: types and severity
- Fires

Communicate Your Information

Establish communication with firehouses, police stations, hospitals, emergency operations centers (EOCs), etc.

Communicate blast damage zone, outdoor radiation levels, and other impacts to operations centers or an EOC

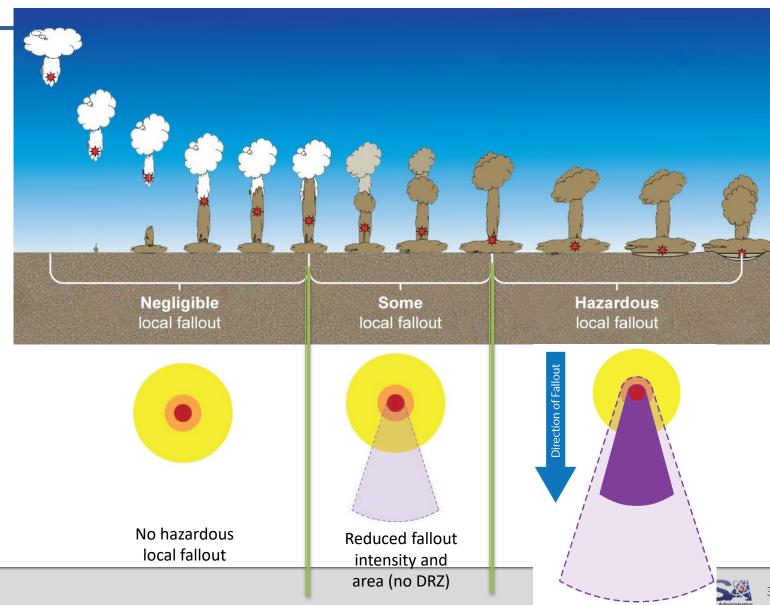
Save Lives

Refer to relevant zone-based Response Card for lifesaving priorities:

MDZ is the early response priority with the greatest lifesaving potential

Develop a Common Operating Picture

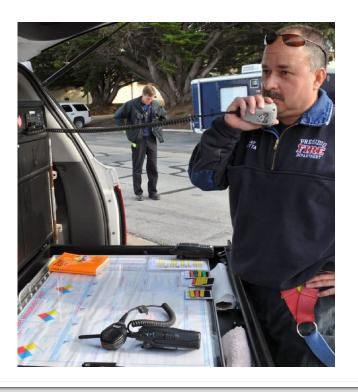
- Establish communications with first response facilities and other assets, especially those in the Impacted Jurisdiction
- EOCs receive and map first-responder and facility observations on fallout, fire, blast, casualty, infrastructure impacts
- Designate and map hazard zones
- Coordinate to establish a single location where local observations impacts are aggregated into a COP


Simplified zone graphics can aid initial assessments

Variations Based on Height of Burst

For elevated detonations, fallout related zones may be reduced or absent.

- Light Damage Zone (LDZ)
- Moderate Damage Zone (MDZ)
- Severe Damage Zone (SDZ)
- Dangerous Radiation Zone (DRZ)
- /\ Hot Zone

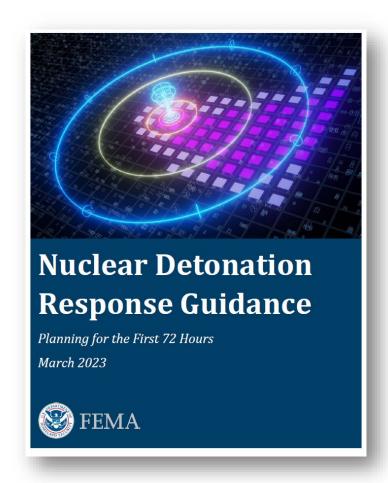


Build a Common Operating Picture

Zone	Observables	
LDZ	 Extensive window/exterior damage Structures intact, but most windows broken Some (mostly) minor injuries due to glass & debris Fires possible, especially near MDZ 	
MDZ	 Significant Damage and Injuries Large number of collapsed & unstable structures Many fatalities and severely injured. Rubble and fires, potential for firestorm 	
SDZ	 Complete destruction of most buildings The few survivors, only in large buildings or underground. High radiation hazard from activation and fallout. 	
DRZ	 Dangerous radiation levels outdoors > 100 mGy/h outdoor dose rates Radiation hazard primarily first few hours, will overlap MDZ & LDZ Outdoor radiation hazard, recedes over first day 	
	Elevated radiation levels	
Hot Zone	 > 0.1 mGy/h outdoor dose rates Potentially large area (100s of miles), will overlap MDZ & LDZ Protective public to reduce reduce long term cancer concern. May take hours for fallout to arrive in outlaying areas, recedes after a day 	

Zones are based on **observables** and **measurable** radiation levels.

Information should be reported back to a centralized location.


Vista Forge Seminar of Tactic 3

LLNL-PRES-2008162-DRAFT 35

Missions 3 & 4

Organize the Response

- Tactic 4: Initiate a Zone-Based Response
- Tactic 5: Establish Area Command
- Tactic 6: Sustain Critical Infrastructure

Provide Care to Survivors

- Tactic 7: Evacuate
- Tactic 8: Triage, Stabilize, and Transport
- Tactic 9: Decontaminate

36

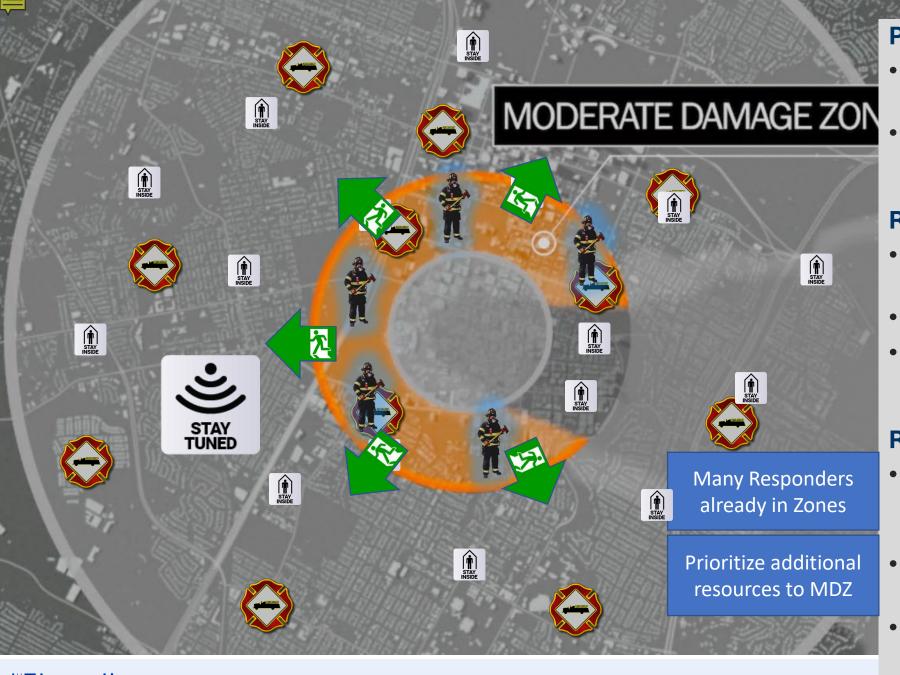
Zon	е Туре	Shelter and Evacuation Priorities
l	LDZ	 Conduct targeted evacuation of unsafe areas (e.g., fires, heavy smoke, unstable structures). Direct evacuees towards safety and away from HZ. Do not prevent spontaneous evacuation.
N	MDZ	Instruct public to evacuate towards the LDZ and away from the HZ. Prioritize assisted evacuation for the non-ambulatory. Recruit volunteers to support evacuation.
S	SDZ	 Instruct everyone – responders included – to remain sheltered indoors. Move if shelter threatened by fire, collapse, or other hazards. Prepare to evacuate once radiation levels are less than 10 R/h. Consider evacuating through subterranean structures (e.g., subways, tunnels).
D)RZ*	Instruct everyone – responders included – to remain sheltered indoors. Prepare to evacuate (in 12–24 hours) once radiation levels are less than 10 R/h. Consider evacuating through subterranean structures (e.g., subways, tunnels).
(be	HZ eyond Z & LDZ)	 Instruct public to shelter inside. Targeted evacuation of unsafe areas (e.g., fires, heavy smoke, unstable structures). Direct self-evacuees towards safety and away from HZ: Do not prevent spontaneous evacuation.

^{*} For areas in the MDZ and LDZ that are also in the DRZ, follow the DRZ shelter/evacuation priorities until radiation decays below DRZ levels.


Public Shelter / Evacuation Strategy

- **SHELTER** is the priority in all zones...
- **EXCEPT** the Moderate Damage Zone...
- Outside of the Dangerous Radiation Zone..

LLNL-PRES-2008162-DRAFT 37



IMPACTS

- Moderate to Major damage, large number of collapsed or partially collapsed structures
- Large number of fatalities and severely injured
- No power, though most batteryoperated equipment should function
- Fires

Lawrence Livermore
National Laboratory
LLNL-PRES-2008162-DRAFT

PUBLIC ACTION

- Shelter unless threatened by fire or collapse
- Tune in and evacuate where and when safe to do so

RESPONSE PRIORITIES

- Defensive firefighting tactics;
 maintain evacuation corridors
- Rapid, assisted evacuation
- Triage and forward injured to care centers

RESPONDER SAFETY

- PPE for non-radiological hazards (sharps, silica dust, fire, & unstable piles)
- Monitor radiation levels, do not enter SDZ or DRZ without plan
- · Gross decon after shift

MDZ Evacuation will Initially be Done with Minimal Resources

- Resources not available for traditional urban search and rescue
- Conduct defensive actions to maintain evacuation corridor
- Use whatever communication method you can (including bullhorns)
- Promote self-help and volunteers to evacuate injured

Expanding Evacuation Areas

LLNL-PRES-2008162-DRAFT 41

Population Decontamination Issues

Entering Shelter

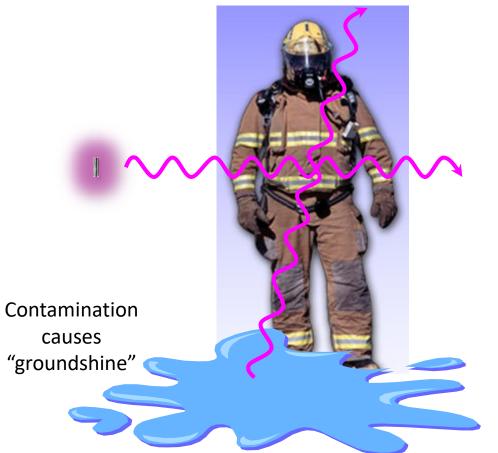
- Simple self-decontamination techniques (such as removing outer clothing, showering, and brushing away fallout material) are effective.
- Techniques should be used as the impacted population leaves the high-hazard zone or enters a shelter

Protecting Responders

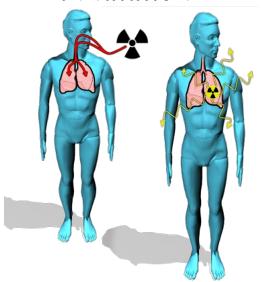
LLNL-PRES-2008162-DRAFT 43

Radiation is energy; Contamination is material

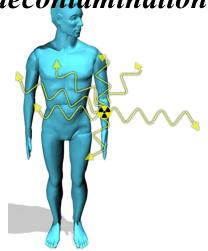
- Exposure to *Radiation* will <u>not</u> contaminate you or make you radioactive.
- **Contamination** is loose radioactive material spilled someplace you don't want it.
- Radioactive contamination emits radiation.
- Contact with *Contamination* can contaminate you with the material.



Exposure & Contamination


Penetrating Radiation Exposure (External)

PPE <u>does not protect against this</u>


Internal Contamination

PPE can prevent inhalation

<u>But</u> not all radioactive sources (like fallout) are inhalation hazards External Contamination

PPE can facilitate decontamination

<u>But</u> radioactive contamination is not a life safety hazard

Pop Quiz: What is the Right Emergency Worker PPE?

- 1. Level D
- 2. Level C / Class III or IV
- 3. Level B / FF Turnouts + SCBA
- 4. Level A

Level C / Class III

3

Level B / FF Turnouts + SCBA

4

Level A

46

Personal Protective Equipment (PPE)

SCBAs, Respirators, Firefighter "turnouts", Level A, B, or C HAZMAT suits do not protect against the primary hazard - the penetrating gamma radiation given off by fallout.

- Inhalation & ingestion is a secondary concern compared to the external exposure.
- Turnouts and anti-contamination clothing can help ease decontamination after entries, but not required for time-critical, life saving activities.

"Reducing the time spent in high dose-rate areas is the greatest protective measure. Bulky isolation suits and elaborate respiratory protection methods may actually increase exposure as they reduce the speed, the ability to communicate, and worker efficiency."

~Key Response Planning Factors for the Aftermath of Nuclear Terrorism

Responder Inhalation and Decontamination Issues

Examples from our Nuclear Tests

LLNL-PRES-2008162-DRAFT 48

Select PPE based on the Non-Radiological Hazards

- Sharp debris
- Silica dust
- Fires
- Unstable structuresetc

Protecting Response Personnel

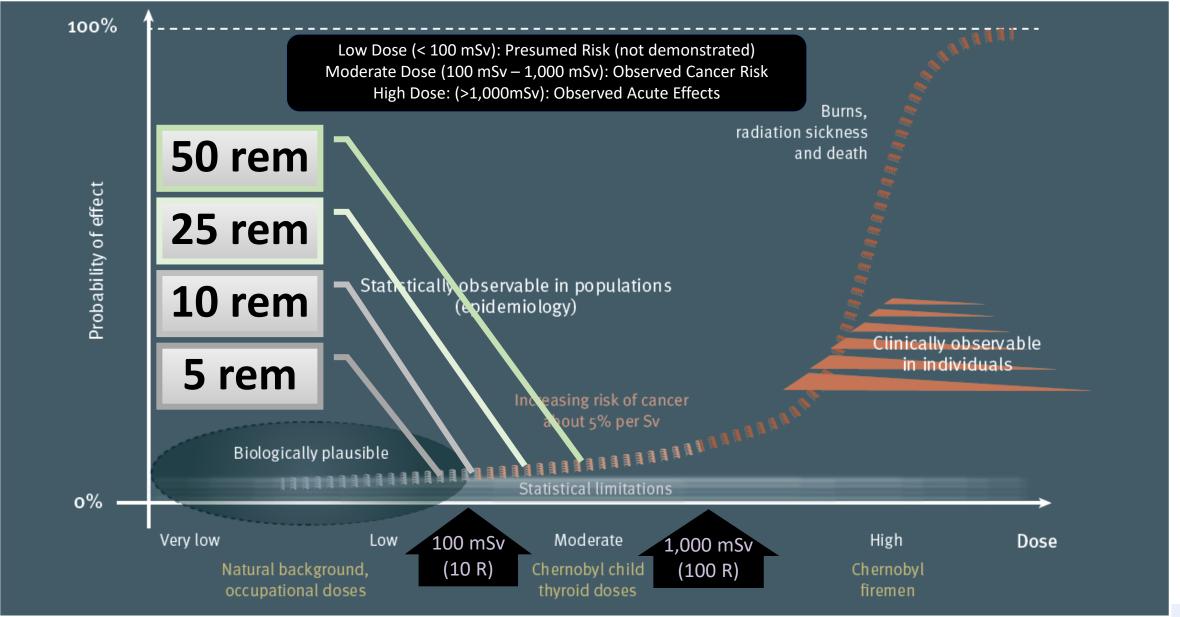
- Responders without radiation detection instruments: Follow the general public protection strategy.
- Responders with radiation instruments: Shelter using radiation detection equipment to monitor shelter conditions.
 - Do not exit shelter or enter areas if radiation levels exceed 10R/hr unless there is a time critical life safety issue (e.g., avoiding fire or building collapse).
 - Provided outdoor radiation levels are below 10R/hr, perform scene assessment of the immediate area for hazards.

50

Emergency Worker Safety Requirements

- Emergency worker:
 - Not just firefighters and police officers; may include other public/private sector staff supporting the response
- Personal protective equipment (PPE):
 - PPE, other than rad detection equipment, should be selected based on nonradiological hazards (e.g., sharp debris, silica dust, fires, unstable structures)
- Emergency dosimetry:
 - Establish dose decision-points
 - Implement group dosimetry techniques
 - Observe ALARA ("as low as reasonably achievable")

Decision Point	Activity	Condition
50 mSv (5 rem ^a)	All occupational exposures	All reasonably achievable actions have been taken to minimize dose.
100 mSv (10 rem²)	Protecting valuable property necessary for public welfare	Exceeding 100 mSv unavoidable & all actions taken to reduce dose. Monitoring available to project or measure dose
250 mSv (25 rem ^a)	Lifesaving or protection of large populations	
250 mSv (>25 rem²)		All conditions above & only for people fully aware of the risks.
500 mGy (50 rad ^b)		NCRP recommended decision- point for whether to withdraw a responder from the hot zone.


^a EPA Protective Action Guides Manual. 2017. (link).

51

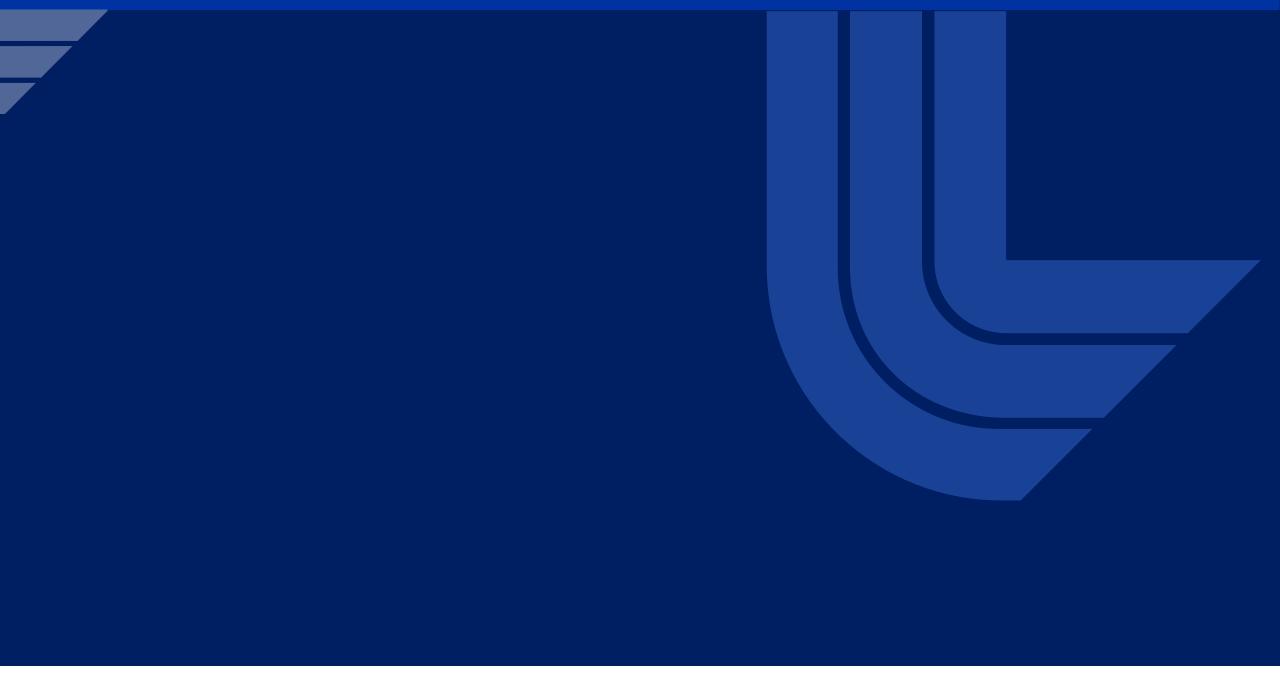
^b NCRP Commentary No 28

http://www.unscear.org/unscear/en/publications/booklet.html?pri

Conclusions

Sheltering can save lives!

- Shelter population and responders out to 80 km (50 miles) until fallout direction and magnitude is established.
- Use visual observations of the damage, early fallout cloud, and detector readings to determine the magnitude to fallout and effects.


Use the Zone-based response approach to:

- Quickly build a common operating picture
- Establish priority zones
- Implement predetermined public and responder actions within each zone
- Establish responder safety protocols

Responder Safety

- Those without radiation detection should wait until hazard extent established
- Primary radiation hazard is EXTERNAL grounds shine, not a respirable hazards.
- PPE requirements should be selected based on the NON-Radiological hazards.

